UPDATED   2020. 10. 15(목) 15:57
페이지상단으로이동

AI 질병 진단 정확도, 환자의 출신 국가와 인종이 좌우한다?

    • 고다솔 기자
    • |
    • 입력 2020-10-12 14:03
    • |
    • 수정 2020-10-12 14:03

인공지능은 수십 년 전에 처음 개발됐다. 그러나 최근 들어 인공지능이 급격히 발전하면서 다양한 분야에 광범위하게 활용되고 있다. 의료 분야에서는 질병 진단, MRI 스캔 등에 활용된다.

그동안 활용된 인공지능의 의료 진단 정확도가 매우 높은 것으로 알려졌다. 그러나 미국 월간지 와이어드의 보도에 따르면, 최근 영국 연구진이 인공지능을 활용한 의료 진단에 한 가지 심각한 문제가 있다는 사실을 발견했다.

환자의 거주 국가와 인종, AI 질병 진단 정확도의 변수?
영국 버밍엄대학교 연구진이 50만여 개의 안구 질환 진단 이미지로 구성된 94개의 데이터를 분석했다. 연구진이 분석 과정에 활용한 데이터는 안구 질환 진단을 위해 훈련하는 데 활용되는 인공지능 알고리즘이다.

그러나 연구진이 활용한 이미지에는 북미, 유럽, 중국 출신 환자들의 이미지가 다수였다. 반면, 인공지능 트레이닝 과정에서는 남아시아, 남미, 아프리카 지역 출신 환자들의 진단 이미지는 전혀 사용되지 않았다.

이에 대해, 버밍엄대학교 샤오수안 리우(Xiaoxuan Liu) 교수는 "인공지능 기반 안구 질환 진단 알고리즘 사진에 국가별 환자들 사진의 격차가 심각하다. 이 때문에 비슷한 질병을 앓고 있는 환자라도, 환자의 거주 국가나 인종과 같은 요인에 따라 인공지능의 질병 진단 정확도와 효율성이 현저히 떨어질 수 있다"라고 지적했다.

즉, 리우 교수의 설명에 따르면 북미, 유럽, 중국 환자들보다 안구 질환 이미지가 적은 남아시아, 남미, 아프리카 대륙 환자들의 질병 진단 정확도가 낮을 수 있다.

또한, 그는 미국 안과의사 협회에서 인종에 따른 진단 효율성 격차를 극복하기 위한 인공지능 툴을 새로 공개했으나 문제는 여전할 것이라고 주장한다. 해당 툴에서는 소수 인종의 정보를 거의 활용하지 않아, 백인보다 소수 인종 환자의 진단 효율성이 떨어질 여지가 있기 때문이다.

인공지능 질병 진단의 또 다른 문제
연구진은 데이터 분석 과정에서 또 다른 문제를 발견했다. 인공지능 질병 진단 알고리즘 훈련 과정에 활용되는 데이터에 환자 연령과 성별, 인종 등 중요한 정보가 전혀 포함되지 않은 부분이다. 이 때문에 인종과 무관하게 환자들의 질병을 정확히 진단하는 데 어려움이 발생한다.

게다가 인공지능 질병 진단 알고리즘을 제공하는 기업들이 알고리즘의 훈련 정보를 상세히 제공하지 않는다는 문제도 존재한다. 인공지능 질병 진단이 무조건 정확하다고 맹신하기 어려운 이유이다.
한편, 리우 교수 연구팀은 연구 과정에서 발견한 문제점을 기반으로 규제 당국에 인공지능 툴 검증 과정에서 다양한 훈련 데이터를 사용할 것을 고려하도록 촉구했다.

고다솔 기자

댓글 [ 0 ]
댓글 서비스는 로그인 이후 사용가능합니다.
댓글등록
취소
  • 최신순
닫기

뉴스레터 구독하기

세상을 바꾸고 있는 블록체인과 IT 관련 이야기를 쉽고 재미있게 만나보세요.

개인정보 수집 및 이용

뉴스레터 발송을 위한 최소한의 개인정보를 수집하고 이용합니다. 수집된 정보는 발송 외 다른 목적으로 이용되지 않으며, 서비스가 종료되거나 구독을 해지할 경우 즉시 파기됩니다.